CS-202 Exercises on web & DNS (L10 - L11)

Before You start

In today’s exercise session, you will get a sense of what happens when you type a URL in
your web browser. More specifically, you will learn about the application layer protocols
involved: DNS and HTTP.

When you type in a URL, your web browser connects to the web server that stores the base file
of the webpage you are trying to access. The two (web browser and web server) use the HTTP
protocol to exchange messages. The web browser sends an HTTP GET request and the web
server replies with (one or more) HTTP response message(s) that contains the requested file.

But before your machine can connect to the web server, it needs to know the IP address of that
server. For this, it uses the Domain Name System (DNS).

To find the IP address of the target web server, the web browser extracts the DNS name from
the URL and asks the DNS client for the corresponding IP address. The DNS client, running
on your machine, then queries the local DNS server for the domain’s IP address.

The DNS hierarchy

Every network has a local DNS server that your DNS client can send queries to. However, the
local DNS does not always have an answer. In such cases, the local DNS asks other DNS
servers, according to a DNS hierarchy that consists of three kinds of DNS servers:

* A oot server knows the IP address of at least one (typically several) top-level- domain
(TLD) servers for each TLD.

* A TLD server knows the IP address of at least one (typically several) authoritative
servers for each domain that falls under its TLD.

* An authoritative server knows the IP address of every DNS name that falls under its
domain

There are two ways in which the local DNS resolves the DNS query: recursively and
iteratively. The two differ how a DNS server react when it receives the query but does not
know the answer:

« If the query is resolved recursively: the DNS servers (of all levels) talk with each
other to get the answer. It goes in the following order:

1. The local DNS server talks with a root server.
2. The root server talks with a TLD server.
3. And the TLD server talks with an authoritative server.

« If a query is resolved iteratively: the local DNS server handles asking the other DNS
servers to get the final answer. The order goes like this:

1. The local DNS server asks the root server for the IP of @ TLD server.
2. The local DNS server asks the TLD server for the IP of an authoritative server.

3. The local DNS server asks the authoritative server for the final answer

Paper and pencil exercises: DNS and HTTP

In these exercises assume that DNS and web-browser caches are initially empty. In some
problems, you will be asked to fill in a table, stating all the messages that were transmitted or
received as a result of some action. For each message, briefly describe the goal, e.g., is this
message an HTTP GET request for a particular URL? Is it a DNS request for the IP address of
a particular DNS name?

Exercise 1: DNS and HTTP message exchange [Basic]

You are working on an EPFL computer called workstation.epfl.ch. Your local DNS server is
ns.epfl.ch. This DNS server knows the IP address of root server a.root-servers.net, which knows
the IP address of .ch TLD server a.nic.ch, which knows the IP address of epfl.ch authoritative
server mns.epfl.ch and unil.ch authoritative server ns.unil.ch. All these DNS servers perform
iterative requests. Table 1 shows information about all the servers involved in this problem.

Server DNS name IP address
Root DNS server a.root-servers.net 1.1.1.1
.ch TLD DNS server a.nic.ch 2222
EPFL DNS server ns.epfl.ch 3333
UNIL DNS server ns.unil.ch 4.4.4.4
EPFL workstation workstation.epfl.ch 5.5.5.5
UNIL web server www.unil.ch 6.6.6.6

Table 1: Server DNS names and IP addresses.

* You open your web browser and type in http://www.unil.ch/index.html. This URL’s base
file does not reference any other URLs. In Table 2a, list all the DNS and HTTP
messages that get transmitted as a result of your action.

http://www.unil.ch/
http://www.unil.ch/index.html

Application
Packet | Source | Destination protocol Purpose
1 5.5.5.5 3333 DNS query for www.unil.ch
2 3333 1.1.1.1 DNS query for www.unil.ch
3 1.1.1.1 3333 DNS reply: NS for .ch is a.nic.ch (2.2.2.2)
4 3333 2.22.2 DNS query for www.unil.ch
5 2222 3.3.33 DNS reply: NS for unil.ch is ns.unil.ch (4.4.4.4)
6 3333 4.4.4.4 DNS query for www.unil.ch
7 4.44.4 3333 DNS reply: 6.6.6.6 is [P of www.unil.ch
8 3.3.33 5.5.5.5 DNS reply: 6.6.6.6 is [P of www.unil.ch
9 5.5.5.5 6.6.6.6 HTTP HTTP GET /index.html
10 6.6.6.6 5.5.5.5 HTTP HTTP OK {index.html}

Table 2: Transmitted DNS and HTTP messages.

Roat DME sarver .ch TLD DNS sarsar
1.1.1.1 2222

2

1
L]
| — " LB
—
N 10 g
sanfkEta o, apf.ch LERE Tt e]

5.5.55 66.6.6

Figure 1: The messages transmitted in Table 2

Immediately after retrieving this URL, you type in http://www.unil.ch/logo.png. In Table 2b, list all
the DNS and HTTP messages that get transmitted as a result of your action.

http://www.unil.ch/
http://www.unil.ch/
http://www.unil.ch/
http://www.unil.ch/
http://www.unil.ch/
http://www.unil.ch/
http://www.unil.ch/logo.png

Application
Packet [Source | Destination protocol Purpose
11 5.5.5.5 6.6.6.6 HTTP HTTP GET /logo.png
12 6.6.6.6 5.5.5.5 HTTP HTTP OK {logo.png}

Exercise 2: Adding referenced files [Basic]

Now, suppose instead that http://www.unil.ch/index.html is an HTML page that references two image
files: http://www.unil.ch/logo.png and http://www.unil.ch/banner.jpg.

* You open your web browser and type in http://www.unil.ch/index.html. In Table 3, list all the DNS
and HTTP messages that would be transmitted as a result of your action. Assume the same DNS
servers are involved as listed in Table 1 and all of these perform iterative requests.

Message| Source | Destination Protocol Purpose
1 5.5.5.5 3.3.33 DNS query for www.unil.ch
2 3333 1.1.1.1 DNS query for www.unil.ch
3 1.1.1.1 3333 DNS reply: NS for .ch is a.nic.ch
(2.2.2.2)
4 3333 2.2.2.2 DNS query for www.unil.ch
5 2222 3333 DNS reply: NS for unil.ch is
ns.unil.ch (4.4.4.4)
6 3333 4444 DNS query for www.unil.ch
7 4.4.4.4 3333 DNS reply: 6.6.6.6 is IP of
www.unil.ch
8 3333 5.5.5.5 DNS reply: 6.6.6.6 is IP of
www.unil.ch
9 5555 6.6.6.6 HTTP HTTP GET /index.html
10 6.6.6.6 5.5.5.5 HTTP HTTP OK {index.html}
11 5.5.5.5 6.6.6.6 HTTP HTTP GET /logo.png
12 6.6.6.6 5.55.5 HTTP HTTP OK {logo.png}
13 5.5.5.5 6.6.6.6 HTTP HTTP GET /banner.jpg
14 6.6.6.6 5.5.5.5 HTTP HTTP OK {banner.jpg}

Table 3: Transmitted DNS and HTTP messages.

http://www.unil.ch/
http://www.unil.ch/
http://www.unil.ch/
http://www.unil.ch/
http://www.unil.ch/
http://www.unil.ch/

Exercise 3: Adding a security twist [Advanced]

Three users, Alice, Bob, and Persa, are logged into their computers, all located inside ETHZ’s
network.

ETHZ has a web server www.ethz.ch and local DNS server ns.ethz.ch, which is also the
authoritative server for the ethz.ch domain.

EPFL has web server www.epfl.ch and local DNS server ns.epfl.ch, which is also the
authoritative server for the epfl.ch domain.

All DNS servers perform recursive requests.

Figure 2 illustrates the setup for this problem.

bob
1.1.11

alice
2222 y

www.ethz.ch
4444

ns.ethz.ch

persa 5555

3.3.3.3

DNS root
6.6.6.6

.ch TLD
7.7.7.7

@ @ @

www.epfl.ch
8.8.8.8

ns.epfl.ch
9.9.9.9

@& O

Figure 2: Question Setup

» Alice types in her web browser http://www.epfl.ch/index.html. This URL’s base file
references two other URLs:
http://www.epfl.ch/image.jpg and http://www.ethz.ch/file.html (which does not
reference any other URL).
In Table 4, list all the application-layer HTTP and DNS packets that are transmitted as a
result of this action

http://www.ethz.ch/
http://www.epfl.ch/
http://www.epfl.ch/index.html
http://www.epfl.ch/image.jpg
http://www.ethz.ch/file.html

Application
Packet [Source IP | Dest. IP protocol Purpose

1 2.2.2.2 5.5.5.5 DNS query for www.epfl.ch

2 5.5.5.5 6.6.6.6 DNS query for www.epfl.ch IP

3 6.6.6.6 7.7.7.7 DNS query for www.epfl.ch

4 An 9.9.9.9 DNS query for www.epfl.ch

5 9.9.9.9 7.7.7.7 DNS replay: 8.8.8.8 is [P of www.epfl.ch
6 T 6.6.6.6 DNS replay: 8.8.8.8 is IP of www.epfl.ch
7 6.6.6.6 5.5.5.5 DNS replay: 8.8.8.8 is IP of www.epfl.ch
8 5.5.5.5 2222 DNS replay: 8.8.8.8 is IP of www.epfl.ch
11 2.2.2.2 8.8.8.8 HTTP HTTP GET /index.html

12 8.8.8.8 2.2.2.2 HTTP HTTP OK {index.html}

13 2.2.2.2 8.8.8.8 HTTP HTTP GET image.jpg

14 8.8.8.8 2.2,2.2 HTTP HTTP OK {image.jpg}

15 2.2.2.2 5.5.5.5 DNS query for www.ethz.ch

16 5.5.5.5 2.2.2.2 DNS reply: 4.4.4.4 is IP of www.ethz.ch
19 2.2.2.2 4.4.4.4 HTTP HTTP GET /file.html

20 4.4.4.4 2.2.2.2 HTTP HTTP OK ({file.html}

Table 4: Transmitted packets.

After Alice has retrieved http://www.epfl.ch/index.html, Bob wants to access the
same URL.

Persa is a malicious user who guesses exactly when Bob tries to access
http://www.epfl.ch/index.html. She wants to trick Bob and make him access a web
server running on her own computer, thinking that he is accessing the EPFL web server.

How can Persa do that by sending DNS traffic to Bob?

When Bob's DNS client makes a DNS request to ns.ethz.ch for www.epfl.ch's
[P address. Persa can impersonate ns.ethz.ch and re- spond that www.epfl.ch’s
[P address is 3.3.3.3 (Persa’s IP address). I Persa’s response gels o Bob's
DNS client before the real ns.ethz.ch’s response, Bob's web browser will
connect to the web server running on Persa’s workstation instead of
www.epfl.ch,

http://www.epfl.ch/
http://www.epfl.ch/
http://www.epfl.ch/
http://www.epfl.ch/
http://www.epfl.ch/
http://www.epfl.ch/
http://www.epfl.ch/
http://www.epfl.ch/
http://www.ethz.ch/
http://www.ethz.ch/
http://www.epfl.ch/index.html
http://www.epfl.ch/index.html

Mini-lab: IP addresses and process names

Exercise 4: Find your own IP address using the ifconfig utility
[Basic]

Every computer in the world has at least one network interface. Whenever an entity
outside the computer wants to communicate with the computer, it needs to name one of its
network interfaces. Different entities use different names to refer to a computer’s network
interface: the network layer uses IP addresses, the link layer uses MAC addresses, the
computer’s operating system (OS) uses local interface names.

The ifconfig utility lists a computer’s network interfaces and displays or updates their
configuration.

Type ifconfig in a terminal command line and answer the following questions:

* How many active network interfaces does your computer have? (Hint: look at ‘status’
under your interfaces, usually named something like eth0, en0, or wlan0.)

* What is the IP address of each active interface? (Hint: Look for something like inet or
inet6)

5 ifconfig

enslel: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.93.20.34 netmask 255.255.248.0 broadcast
10.93.23.255 ether 00:50:56:b8:ce:2b txqueuselen 1000

(Ethernet)
RX packets 179723 bytes 49342556 (49.3 MB)

R¥ errors 0 dropped 0 overruns 0 frame 0
TX packets 85719 bytes 31695783 (31.6 MB)
T¥ errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0

loop txgueuelen 1000 (Local Loopback)

RX packets 110162 bytes 370030090 (370.0 MB)

R¥ errors 0 dropped 0 overruns 0 frame 0

TX packets 110162 bytes 370030090 (370.0 MB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions O

This computer has two interfaces: a wired Ethernet
interface with local name ens160, and what is called a
loopback interface, with local name lo (more on this in a
moment).

To find the [P address we look at the inet value of each interface (or
inetd if inet is not available),

In this computer, the [P addresses are 10.93.20.34 for ens160 and
127.0.0.1 for the loopback interface.

Note: your interface might have ineté but no inet field. This is normal, as your
computer might be using the recent version of the IP addresses which is

(we have not talked about IPv6 yet but they will be covered during the
course).

* Can you guess why it has more than one?

If a computer iz connected to the network through multiple network links,
then it has one network interface for each link. E.g., the INF3 computer is
connected through a wired Ethernet link, as well as a wireless Ethernet link.

The loopback interface is what we call a virtual network interface. This
means that it is not associated with an actual physical link. 1t is typically used
for testing and debugging, and when a process running locally on the
computer wants to communicate with another process also running locally on
the computer. In the latter case, there is no need to communicate through a
“normal” network interface, associated with an actual physical link, since
both processes are running on the same computer.

If you are curious and want to learn more about a command, you can use your environment’s
man pages (e.g. if you type man ifconfig in the command line, it will display everything you
could possibly want to know about the ifconfig command), or you can turn to online resources
(e.g. Wikipedia).

Exercise 5: See local and remote addresses using the netstat
utility [Basic]

The netstat utility displays the contents of various network-related data structures that are
stored in your computer. E.g., if you type netstat -t in the command line, that will display the
list of “communication sessions” that are active between your computer and remote computers.

* The “Local Address” column lists processes that are running in the application layer of
your computer. Notice that the names of all (or most of) these processes share a common
prefix. Why is that? What does this prefix correspond to?

S netstat -t

Active Internet connections {w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address
tecp O 0ic-ub24-spr-009:37378 files6.epf:microsoft-ds

ESTABLISHED
tcp O 0ic-ub24-spr-009:52248 ad6.epfl.ch:45665

ESTABLISHED
tcp O 0 localhost:36969 localhost:42026

ESTABLISHED
fcp 0 Oic-ub24-spr-009:43744 icin3pcd2.epfl.ch:ssh

ESTABLISHED
tecp 0 0ic-ub24-spr-009:42078 itsvdie0020.xaas.e:4002

ESTABLISHED
fcp O 0 localhost:36969 localhost:43242

ESTABLISHED
tcp 0 0 localhost:60114 localhost:43965

ESTABLISHED
tcp O 0 localhost:42026 localhost: 36969

ESTABLISHED
tecp 0 0ic-ub24-spr-009:37432 files6.epf:microsoft-ds

ESTABLISHED
tcp 0 0 localhost:57056 localhost:36969

ESTABLISHED
tcp O 0 localhost:36969 localhost: 57056

ESTABLISHED
tcp O 0ic-ub24-spr-009:45556 ad6.epfl.ch:45695

ESTABLISHED

In our computer, most local processes have names that start with
localhost or ic-ub24-spr-009,

As we said in class, the first part of a process’s name
identifies a network interface that belongs to the computer
where the process is running. Since all the local processes
are, of course, running on our computer, the first part of
their names identifies a network interface of our computer.

* The “Foreign Address” column lists all the processes that are running in the application
layer of a remote computer that your computer is communicating with. Login to
in your browser and then run the netstat utility. Can you tell which foreign address(es)
correspond to EPFL server(s)?

There can be multiple foreign addresses corresponding to EPFL servers. For
instance: tequila.cpfl.ch.https and ewa.epfl.ch.https.

https://moodle.epfl.ch/

Mini-lab: Playing with DNS

The dig utility

The dig utility relies on the DNS protocol to provide information related to DNS names and IP
addresses. It is similar to the host utility (that you used in Exercise Session 1), but provides
more detailed information.

Run “dig adelaide.edu.au” and answer the following questions:

* What is the primary IP address (A record) associated with adelaide.edu.au according to
the output?

* What DNS server provided the response to your query, and how long did the query take
to complete?

The primary IP address (A record) is 129.127.149.1, and the response was
provided by a local DNS server at 192.168.1.1. The response time may range
from a few milliseconds to several seconds, depending on whether the record
was cached. If cached, the response is typically delivered almost instantly.
Mote: The A record shown in the output may vary over time, and your DNS
server may also differ,

DNS servers store information in the form of DNS resource records (RRs), of different
types. DNS clients and servers generate DNS queries (or “questions” or “requests”), while
DNS servers provide DNS responses (or “answers”) that contain RRs. A DNS message
may carry multiple queries and/or responses.

* What kind of information do the following RR types provide: A, CNAME, PTR, MX,
NS, and SOA? You can find the answer on Wikipedia and/or (or you can just
google it, and you will see what that is).

https://www.ietf.org/rfc/rfc1033.txt

A = address record: stores the IP address for a hostname.

CNAME = canonical name record: a machine may have several
names (aliases) associated with it; the CNAME record points from
the aliases to the “main” one. The resolver would then query for
the A record of the canonical name (but in practice the A record is
usually returned together with the CNAME record to make the
query faster). Alternatively, the domain’s administrator could just
create an A record for each alias, but then would have to make sure
they are all modified consistently whenever the IP address is
changed.

PTR = pointer record; stores the canonical name for an [P address.

MX = mail exchange record: stores the hostname of the e-mail
server for the domain. These are servers that accept messages via
SMTP.

NS = indicates the hostname of the nameservers that are
responsible (authoritative) for the domain.

SOA = start-of-authority record: stores various administrative
informa- tion about a domain: the name of the primary
authoritative nameserver, the e-mail address of the administrator
(note that the @ sign is replaced with a dot), the serial number of
the configuration file, how often the secondary authoritative
nameservers should synchronize with the primary etc.

More types of DNS records, and corresponding details can be
found on this

Now you know the kind of information different RR types provide. Use this information to
answer the next parts of this lab exercise.

Exercise 6: DNS Lookup [Basic]

* What is the IP address of epfl.ch? Which RR type stores the information needed to
answer this question?

https://en.wikipedia.org/wiki/List_of_DNS_record_types

user@host:~$ dig epfl.ch

; <<>> DiG 9.16.1-Ubuntu <<>> epfl.ch

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 49

;; flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: O,
«<— ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 65494

;; QUESTION SECTION:

;epfl.ch. IN A

;; ANSWER SECTION:
epfl.ch. 86400 IN A 128.178.222.83

;; Query time: 0 msec

;; SERVER: 127.0.0.53#53(127.0.0.53)

;; WHEN: mar oct 11 15:48:06 CEST 2022
;; MSG SIZE rcvd: 52

The IP address of epfl.ch is 128.178.222.83. To get this answer we
make a type A query.

What is the DNS name associated with the IP address obtained in the previous question?
Which RR type stores the information needed to answer this question?

To do reverse lookup, use the ‘-x’ option; you can view more details about the option using
“man dig”.

user@host:~5h dig -« 128.178,222.83

s <<>> DiG 9.16.1-Ubuntu <<>>-x 128.178.222 83
:;: global options: +emd
. Got answer:
i; =>>HEADER<<- opcode: QUERY, status: NOERROR, id: 4689
i flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: O,
e+ ADDITIONAL: 1

;3 OPT PSEUDOSECTION:

; EDNS: version: O, flags:; udp: 65494

- QUESTION SECTION:
;83.222.178.128.in-addr.arpa. IN PTR

;s ANSWER SECTION:
83.222.178.128.in-addr.arpa. 86400 IN FTR app-os-
i— exppge.epfl.ch.

;; Query time: O msec

;» SERVER: 127.0.0.53#53(127.0.0.53)

;; WHEN: mar oct 11 16:07:38 CEST 2022
;s MISG SIZE revd: 91

The DNS name associated with 128.178.222.83 15
app-os-exopge.epfl.ch. We made a type PTR query for the name
83.222.178.128.in-addr.arpa.

Exercise 7: Authoritative and local DNS servers [Basic]

Each lower-level domain, e.g., epfl.ch, has a set of authoritative DNS servers, which store all the
latest information that the DNS system has about this domain.

When a DNS server provides a DNS answer that concerns a domain for which the server is authoritative,
we say that the answer itself is authoritative.

* Which are the authoritative DNS servers for epfl.ch? What RR type stores the information needed
to answer this question?

useri@host:™% dig epfl.ch N5

; <<>> DiG 9.16.1-Ubuntu <<>> epfl.ch N5
:; global options: +emd
;i Got answer:
;i ->>HEADER<<- apcode: QUERY, status: NOERROR, id: 3016
;; flags: gr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0,
i— ADDITIONAL: 1

. OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 65494
;; QUESTION SECTION:

sepfl.ch, IN M5

- ANSWER SECTION:

epfl.ch. 86400 IN NS stisun2.epfl.ch.
epfl.ch. 86400 IN M5 stisunl.epfl.ch.
;; Query time: 0 msec

5 SERVER: 127.0.0.53#53(127.0.0.53)

; WHEM: mar oct 11 16:26:12 CEST 2022

o MISG SIZE rcvd: B0

The authoritative DNS servers for EPFL are stisunl.epfl.ch and
stisun2.epfl.ch, and the type of resource records is NS as show in the answer
section of the dig result above,

Your computer (like any Internet end-system in the world) knows the IP address(es) of one or more local
DNS servers. When a DNS client process running in the application layer of your computer (e.g., dig)
needs information from the DNS system, it sends a DNS query to one of these local DNS servers.

* Look carefully at the answers provided by dig so far. Can you identify in them the IP address of the
local DNS server used by your computer? Are you using one of the authoritative DNS servers for
epfl.ch as your local DNS server?

This is shown by dig in the output for any query that does not use a
user-specified nameserver:

user@host:~% dig epfl.ch

; =€=> 0iG 9.16.1-Ubuntu <<>> epfl.ch

;; Elobal options: +cmd

;» Got answer:

;; -»>HEADER<<- opcode: QUERY, status: NOERROR, id: 49

;: flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0,
o HDD'T'GN.A LZ l

53 OPT PSEUDOSECTION:
; EDNS: wersion: 0, flags:; udp: 65494

: QUESTION SECTION:
;epfl.ch. IN A

i ANSWER SECTION:

epfl.ch. 86400 IN A 128.178.222.83

;; Query time: 0 msec

;; SERVER: 127.0.0.53#53(127.0.0.53)

;; WHEN: mar oct 11 15:48:06 CEST 2022
;; MSG SIZE rcvd: 52

In the above dig output, the IP address of local nameserver is 127.0.0.53, and
the port used is *53°, which is the default port for DNS

The answer can also be found in the file /etc/resolv.conf:
nameserver 127.0.0.53

Note though that this address is a local (loopback) address! That means that
the DNS server reported by dig is inside your computer! Why? This allows a
faster DNS resolution. Your machine has a service called systemd-resolved
which caches in the local machine DNS responses and sends DNS requests
over the network only when the record is not available in the local cache. In
addition to caching, systemd-resolved supports other more advanced DNS
features, like DNS over TLS and DNSSEC for more secure and private DNS
resolutions.

Nevertheless, whenever a request can not be served by the local cache,
systemd-resolved has to ask a remote DNS server to provide an answer. To
find the DNS server that systemd-resolved will use, you can run
systemd-resolve —status and inspect the Global/DNS Servers field:

user@host:~S\SS$ systemd-resolve --status

Global

LLMNR setting: no
MulticastDNS setting: no
DNSOverTLS setting: no
DNSSEC setting: no DNSSEC
supported: no

DNSSEC NTA: 10.in-addr.arpa
16.172.in-addr.arpa
168.192.in-addr.arpa
17.172.in-addr.arpa
18.172.in-addr.arpa
19.172.in-addr.arpa
20.172.in-addr.arpa
21.172.in-addr.arpa
22.172.in-addr.arpa
23.172.in-addr.arpa
24.172.in-addr.arpa

25.172.in-addr.arpa
26.172.in-addr.arpa
27.172.in-addr.arpa
28.172.in-addr.arpa
29.172.in-addr.arpa
30.172.in-addr.arpa
31.172.in-addr.arpa corp
d.fipg.arpa

home internal
intranet

lan loca

private

test

Link 2 {ens160) Current

Scopes: DNS

DefaultRoute setting: yes LLMMNR
setting: yes MulticastDNS setting: no
DMNSOverTLS setting: no DMSSEC
setting: no

DMSSEC supported: no

Current DNS Server: 128.178.15.227 DNS
Servers: 128.178.15.227
128.178.15.228

DMS Domain: ~.

intranet.epfl.ch

In this case, systemd-resolved relies on 128.178.15.227 and
128.178.15.228 which correspond to the authoritative DNS servers
(stisunl.epfl.ch and stisun2.epfl.ch).

A DNS client can send a DNS message to any DNS server in the world; it is not obligated to contact only
the local DNS servers. If you run: “dig @<IP address> ...” then dig will send its DNS query to the DNS
server that has the specified <IP address>.

* Ask the DNS server with IP address 8.8.8.8 for the “mail servers” that serve the epfl.ch domain.
Did you get an authoritative answer? Hint: look at the HEADER flags.

user@host:~S\S$ dig @8.8.8.8 epfl.ch MX

; <<>> DiG 9.16.1-Ubuntu <<>> @8.8.8.8 epfl.ch MX
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 37617
;; flags: gr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: O,
«<— ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 512

;; QUESTION SECTION:

;epfl.ch. IN MX

;; ANSWER SECTION:

epfl.ch. 21512 IN MX 50 mx3.epfl.ch.
epfl.ch. 21512 IN MX 50 mx2.epfl.ch.
epfl.ch. 21512 IN MX 50 mx1.epfl.ch.

;; Query time: 7 msec

;; SERVER: 8.8.8.8#53(8.8.8.8)

;3 WHEN: mar oct 11 17:21:34 CEST 2022
;; MSG SIZE rcvd: 96

We see that Google’s server cannot give us an authoritative answer, since the
flags do not contain aa. This is because it does not have authority for the
EPFL domain.

» What do you need to do to get an authoritative answer to your question?

To get an authoritative answer we can just query one of the authoritative nameservers for
the domain epfl.ch:

user@host:~5\55 dig stisunl.epfl.ch epfl.ch X

: << DiG 9.16.1-Ubuntu <<>> @stisunl.epfl.ch epfl.ch MX

; (1 server found)

:; global options: +emd

;» Got answer:

i -»>>HEADER<<- opcode: QUERY, status: NOERROR, id: 5035

:: flags: gr aa rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 2,
— ADDITIONAL: 11

Exercise 8: DNS caching and time-to-live (TTL) [Advanced]

DNS clients and servers — at all levels of the DNS hierarchy — cache the RRs they receive. To prevent
inconsistency between authoritative and cached RRs, each RR is associated with a time to live (TTL),
which indicates until when the RR is expected to be valid, hence until when it should be cached.

Imagine that the EPFL sysadmins need to urgently change the names of the mail servers that serve
epfl.ch. Hence, they login to the authoritative DNS servers for epfl.ch and change the RR that specifies
the mail-server names, before the RR’s TTL has expired.

* What will happen now if a DNS client asks 8.8.8.8 for the mail servers that serve epfl.ch? How
long will it take until 8.8.8.8 can answer this question correctly?

Since we query the DNS server of Google (8.8.8.8), the answer is not
authoritative, thus not guaranteed to be correct. This is because Google may
already have the old record in i1ts cache; until the record expires (remaining
TTL wvalue). it keeps serving the old value without knowing that the value is
incorrect.

* What could the EPFL sysadmins do to make the change as quickly as possible without causing any
inconsistency in the DNS system?

From the guery results (dig @stisunl.epfl.ch epfl.ch MX), we can see that
TTL wvalue EPFL RRs are set to 86400 seconds, that is, 24 hours or 1 day. In
the worst case scenario, where a DNS server would cache the EPFL RR just
before the configuration change, it will take 24 hours for that cache to
invalidate.

In order for EPFL sysadmins to make change as quickly as possible, they
should inspect the TTL of the MX records, in this case 24 hours. We change it
to a small value (e.g. 1 second or even zero). Then we wait for 24 hours until
the new record propagates to all servers that may have cached the old one.
Now we can change the content of the MX record and set the TTL back to the
old value.

The downside is that for 24 hours EPFL’s DNS server will get much higher
DMNS traffic due to those queries (since the caches of all the other resolvers on
the Internet expire quickly). To avoid that, we can make the TTL change in 2
phases: first we change it to a few minutes, and afier 24 hours we change it to
1 or 0 seconds, In this case we will get a very high volume of traffic only for a
few minutes.

Mini-lab: Cookies [Optional]

Cookies enable a web server to link subsequent HTTP requests to the same web browser: if you
send 10 HTTP GET requests, for 10 different resources, to the same web server, the web server can use
cookies to figure out that these 10 requests came from the same web browser, even if you did not
explicitly provide any identification information (e.g., you did not login).

Before you start, figure out how to control cookie settings in your browser. In Firefox:

» To view or delete the cookies that have been stored on your computer: = — Settings — Privacy &
Security — Cookies and Site Data — Manage Data or Clear Data...

» To view all the cookies stored due to visiting the web page: Go to Storage from the top panel, and
then select Cookies.

Let us see cookies in action:

» Allow your browser to exchange cookies. Delete existing cookies. Open . Did the EPFL
web server send you any cookies? And are they all from the same domain?

Yes, there are four cookies from two domains: two cookies from .epfl.ch
and two from domain moodle.epfl.ch.

You can read more about EPFL’s cookies

* Login to your moodle account. Restart your web browser and re-open . Does it ask you to
login again? Explain your browser’s behavior.

No, we are automatically logged in. This happens because, along with the
current HTTP request, our web browser sent a TequilaPHP cookie for
moodle.epfl.ch, which contains our login information. This way the server
“remembers” our credentials and directly shows the courses we are registered
in.

You can read more about EPFL’s Tequila authentication service
(it has been deprecated now)

* Delete existing cookies. Restart your web browser and re-open . Does it ask you to login
again? Explain your browser’s behavior.

Yes, it asks us to login again: since we deleted the cookies, the TequilaPHP
cookie is longer there. So it is as if we visited the website for the first time.

https://moodle.epfl.ch/
https://www.epfl.ch/about/overview/regulations-and-guidelines/epfl-privacy-policy/cookies-policy/
https://moodle.epfl.ch/
https://web.archive.org/web/20250216112823/https://tequila.epfl.ch/
https://moodle.epfl.ch/

	CS-202 Exercises on web & DNS (L10 - L11)
	
	
	Before You start
	Paper and pencil exercises: DNS and HTTP
	Exercise 1: DNS and HTTP message exchange [Basic]
	

	
	Exercise 2: Adding referenced files [Basic]​
	Exercise 3: Adding a security twist [Advanced]

	Mini-lab: IP addresses and process names​
	​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​Mini-lab: Playing with DNS​
	Exercise 6: DNS Lookup [Basic]
	​Exercise 7: Authoritative and local DNS servers [Basic]
	​​Exercise 8: DNS caching and time-to-live (TTL) [Advanced]

	Mini-lab: Cookies [Optional]

